Dynamic Range Compression in the Honey Bee Auditory System toward Waggle Dance Sounds
نویسندگان
چکیده
Honey bee foragers use a "waggle dance" to inform nestmates about direction and distance to locations of attractive food. The sound and air flows generated by dancer's wing and abdominal vibrations have been implicated as important cues, but the decoding mechanisms for these dance messages are poorly understood. To understand the neural mechanisms of honey bee dance communication, we analyzed the anatomy of antenna and Johnston's organ (JO) in the pedicel of the antenna, as well as the mechanical and neural response characteristics of antenna and JO to acoustic stimuli, respectively. The honey bee JO consists of about 300-320 scolopidia connected with about 48 cuticular "knobs" around the circumference of the pedicel. Each scolopidium contains bipolar sensory neurons with both type I and II cilia. The mechanical sensitivities of the antennal flagellum are specifically high in response to low but not high intensity stimuli of 265-350 Hz frequencies. The structural characteristics of antenna but not JO neurons seem to be responsible for the non-linear responses of the flagellum in contrast to mosquito and fruit fly. The honey bee flagellum is a sensitive movement detector responding to 20 nm tip displacement, which is comparable to female mosquito. Furthermore, the JO neurons have the ability to preserve both frequency and temporal information of acoustic stimuli including the "waggle dance" sound. Intriguingly, the response of JO neurons was found to be age-dependent, demonstrating that the dance communication is only possible between aged foragers. These results suggest that the matured honey bee antennae and JO neurons are best tuned to detect 250-300 Hz sound generated during "waggle dance" from the distance in a dark hive, and that sufficient responses of the JO neurons are obtained by reducing the mechanical sensitivity of the flagellum in a near-field of dancer. This nonlinear effect brings about dynamic range compression in the honey bee auditory system.
منابع مشابه
Editorial: Ballroom Biology: Recent Insights into Honey Bee Waggle Dance Communications
In his 1950 book Bees: Their Vison, Chemical Senses, and Language, Karl von Frisch recounts his decades of research into how honey bees perceive the world, concluding “The bee’s life is like a magic well: the more you draw from it, the more it fills with water.” (von Frisch, 1950). Sixty-five years on, science continues to draw from that magical well, and we have learned a tremendous amount abo...
متن کاملAutomatic detection and decoding of honey bee waggle dances
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer's movements and then search for the advertised spots in the field. Throughout the last decades, biologists ha...
متن کاملDancing attraction: followers of honey bee tremble and waggle dances exhibit similar behaviors
The function of the honey bee tremble dance and how it attracts signal receivers is poorly understood. We tested the hypothesis that tremble followers and waggle followers exhibit the same dance-following behavior. If correct, this could unify our understanding of dance following, provide insight into dance information transfer, and offer a way to identify the signal receivers of tremble dance ...
متن کاملIntra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding
Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to...
متن کاملThe anti-waggle dance: use of the stop signal as negative feedback
*Correspondence: Parry M. Kietzman, Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA e-mail: [email protected] Numerous activities within honey bee (Apis mellifera L.) colonies rely on feedback loops for organization at the group level. Classic examples of these self-organizing behaviors occur during foraging and swarm nest site selecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007